Modifier and Type | Method and Description |
---|---|
Fitness |
GeneticAlgorithm.getFitness()
Returns the
Fitness from this genetic algorithm's body
|
Modifier and Type | Method and Description |
---|---|
void |
GeneticAlgorithm.setFitness(Fitness fitness)
Sets the
Fitness |
Constructor and Description |
---|
GeneticAlgorithm(Fitness fitness)
Constructs a new genetic algorithm with no initial population and the
default generation limit.
|
GeneticAlgorithm(Fitness fitness,
Population<T> pop)
Constructs a new genetic algorithm with the specified population and the
default generation limit.
|
GeneticAlgorithm(Fitness fitness,
Population<T> pop,
int genlimit)
Constructs a new genetic algorithm with the specified population and the
specified generation limit.
|
Constructor and Description |
---|
CrowdingGA(Fitness fitness,
Crowder crowder)
Default constructor
|
CrowdingGA(Fitness fitness,
Crowder crowder,
Population<T> population,
int generations)
Create a new CrowdingGA by setting the initial population and the generation limit
|
IslandGA(Fitness fitness)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
GeneticAlgorithm<T> algo)
Creates a IslandGA instance with an empty fitness
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
GeneticAlgorithm<T> algo,
int migration)
Creates a IslandGA instance with an empty fitness
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
GeneticAlgorithm<T> algo,
int migration,
IslandGA.Graph geography)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
GeneticAlgorithm<T> algo,
int migration,
IslandGA.Graph geography,
IslandGA.ReplacementStrategy rp)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
int migration)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
int migration,
IslandGA.Graph geography)
Creates a IslandGA instance
|
IslandGA(Fitness fitness,
Population<T> population,
int genlimit,
int niches,
int migration,
IslandGA.Graph geography,
IslandGA.ReplacementStrategy rp)
Creates a IslandGA instance
|
NSGA2(Fitness fitness)
Default constructor
|
NSGA2(Fitness fitness,
Population<T> population)
Generates a new NSGA2 instance
|
NSGA2(Fitness fitness,
Population<T> population,
int generations)
Generates a new NSGA2 instance
|
NSGA2(Fitness fitness,
Population<T> population,
int generations,
int trials)
Generates a new NSGA2 instance
|
SimpleGA(Fitness<T> fitness,
Population<T> population)
Builds a new SimpleGa with the default generation limit, crossover and mutation probability,
elitism, selection and crossover methods, and elitism strategy.
|
SimpleGA(Fitness<T> fitness,
Population<T> population,
int generations)
Builds a new SimpleGa with the default crossover and mutation probability,
elitism, selection and crossover methods, and elitism strategy.
|
SimpleGA(Fitness<T> fitness,
Population<T> population,
int generations,
double crossover,
double mutation)
Builds a new SimpleGa with the default
elitism, selection and crossover methods, and elitism strategy.
|
SimpleGA(Fitness<T> fitness,
Population<T> population,
int generations,
double crossover,
double mutation,
int elitism)
Builds a new SimpleGa with the default selection and crossover methods, and elitism strategy.
|
SimpleGA(Fitness<T> fitness,
Population<T> population,
int generations,
double crossover,
double mutation,
int elitism,
SimpleGA.SelectionMethod selmethod,
SimpleGA.CrossoverMethod crossmethod)
Builds a new SimpleGa with the default elitism strategy.
|
SimpleGA(Fitness<T> fitness,
Population<T> population,
int generations,
double crossover,
double mutation,
int elitism,
SimpleGA.SelectionMethod selmethod,
SimpleGA.CrossoverMethod crossmethod,
GeneticAlgorithm.ElitismStrategy es)
Builds a new SimpleGa.
|
SteadyStateGA(Fitness fitness)
Builds a new SteadyStateGA with null population, default generation limit, default replacement rate,
defaul selection rate, default selection method.
|
SteadyStateGA(Fitness fitness,
Population<T> pop)
Builds a new SteadyStateGA with default generation limit, default replacement rate,
defaul selection rate, default selection method.
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit)
Builds a new SteadyStateGA with default replacement rate,
defaul selection rate, default selection method.
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit,
int rr,
int sr,
Selector<T> selector,
AbstractStage<T>... stages)
Builds a new SteadyStateGA
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit,
int rr,
int sr,
SteadyStateGA.SelectionMethod selmethod,
AbstractStage<T>... stages)
Builds a new SteadyStateGA
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit,
Selector<T> selector,
AbstractStage<T>... stages)
Builds a new SteadyStateGA
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit,
SteadyState<T> ss)
Builds a new SteadyStateGA
|
SteadyStateGA(Fitness fitness,
Population<T> pop,
int genlimit,
SteadyStateGA.SelectionMethod selmethod,
AbstractStage<T>... stages)
Builds a new SteadyStateGA with default replacement rate,
defaul selection rate
|
Modifier and Type | Method and Description |
---|---|
Fitness<C> |
Fitness.clone() |
protected Fitness<C> |
Fitness.duplicate()
Builds a copy instance.
|
Fitness<T> |
Population.getEvaluatedBy()
Return the genetic algorithm that has evaluated this population.
|
Modifier and Type | Method and Description |
---|---|
void |
Population.setEvaluatedBy(Fitness fitness)
Specify the fitness that has scored population
|
Modifier and Type | Field and Description |
---|---|
protected Fitness<T> |
AbstractStage.fitness
The current Fitness
|
Modifier and Type | Method and Description |
---|---|
Fitness<T> |
AbstractStage.getFitness()
Get the
Fitness currently setted for this stage |
Modifier and Type | Method and Description |
---|---|
void |
AbstractStage.setFitness(Fitness<T> fit)
Change the
Fitness to this stage propagating the change recursively |
void |
AbstractStage.setFitness(Fitness<T> fit,
boolean recursively)
Change the
Fitness to this stage propagating the change recursively
according to the flag given as parameter |
void |
AlgorithmStage.setFitness(Fitness fit,
boolean recursively) |
void |
Parallel.setFitness(Fitness fit,
boolean recursively) |
void |
Sequence.setFitness(Fitness fit,
boolean recursively) |
Modifier and Type | Method and Description |
---|---|
void |
Crowder.setFitness(Fitness fit,
boolean recursively) |
Modifier and Type | Method and Description |
---|---|
void |
DeJongCrowder.setFitness(Fitness fit,
boolean recursively)
XXX
|
Modifier and Type | Class and Description |
---|---|
class |
FitnessFunction
This class represent the fitness function for problem 10
|
Modifier and Type | Class and Description |
---|---|
class |
ImageMatchingFitness
This class represent the fitness function used to match orientation of a sample image.
|
Modifier and Type | Method and Description |
---|---|
protected Fitness<BitwiseChromosome> |
ImageMatchingFitness.duplicate() |
Modifier and Type | Class and Description |
---|---|
static class |
MultiObjectiveProblem.ProblemFitness |
Modifier and Type | Class and Description |
---|---|
class |
WeekFitness
Rappresent the fitness function used to evaluate the quality of a solution
founded by the algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
PatternGA.PatternFitness |
Modifier and Type | Class and Description |
---|---|
class |
TSPGA.TSPFitness |
Modifier and Type | Class and Description |
---|---|
class |
EntropyFitness
Tutorial showing how to set-up a minimization problem.
|