jenes.performance
Class RoyalGA

java.lang.Object
  extended by jenes.GeneticAlgorithm<BitwiseChromosome>
      extended by jenes.performance.RoyalGA

public class RoyalGA
extends GeneticAlgorithm<BitwiseChromosome>


Nested Class Summary
 
Nested classes/interfaces inherited from class jenes.GeneticAlgorithm
GeneticAlgorithm.ElitismStrategy, GeneticAlgorithm.ResizeStrategy, GeneticAlgorithm.Statistics
 
Field Summary
 
Fields inherited from class jenes.GeneticAlgorithm
algorithmListeners, body, DEFAULT_GENERATION_LIMIT, DEFAULT_HISTORY_SIZE, elitism, elitismStrategy, generation, generationLimit, generationListeners, initialPopulation, MAX_HISTORY_SIZE, MIN_HISTORY_SIZE, random, randomization, resizeStrategy, statistics
 
Constructor Summary
RoyalGA(Population<BitwiseChromosome> pop, int gen, int sectionSize, int blockSize, int numBlocks)
           
 
Method Summary
protected  void evaluateIndividual(Individual<BitwiseChromosome> individual)
          Evaluates a single individual.
static void main(java.lang.String[] args)
           
 
Methods inherited from class jenes.GeneticAlgorithm
addAlgorithmEventListener, addGenerationEventListener, addStage, applyElitism, end, evaluatePopulation, evolve, evolve, getBody, getCurrentPopulation, getElitism, getElitismStrategy, getGeneration, getGenerationLimit, getHistoryAt, getHistorySize, getInitialPopulation, getNextPopulation, getRandomization, getResizeStrategy, getStatistics, isBiggerBetter, onGeneration, onInit, onStart, onStop, randomizeIndividual, randomizePopulation, removeAlgorithmEventListener, removeGenerationEventListener, setBiggerIsBetter, setElitism, setElitismStrategy, setGenerationLimit, setHistorySize, setRandomization, setRandomization, setResizeStrategy, start, stop, toString, updateStatistics
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

RoyalGA

public RoyalGA(Population<BitwiseChromosome> pop,
               int gen,
               int sectionSize,
               int blockSize,
               int numBlocks)
Parameters:
pop -
gen -
sectionSize - the length of each section
blockSize - the length of each block (each of them is contained by a section)
numBlocks - the number of blocks
Method Detail

evaluateIndividual

protected void evaluateIndividual(Individual<BitwiseChromosome> individual)
Description copied from class: GeneticAlgorithm
Evaluates a single individual. This evaluation of individuals is specifically related to the problem to solve, thus it is an abstract method requiring an implementation by the sublass.

Specified by:
evaluateIndividual in class GeneticAlgorithm<BitwiseChromosome>
Parameters:
individual - the individual to be evaluated

main

public static void main(java.lang.String[] args)